## 4-1 Videos Guide

## 4-1a

- Form of a power series
- $\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$


## Exercise:

- Find the radius and interval of convergence of $\sum_{n=0}^{\infty}(x+2)^{n}$.

Theorem (statement):

- For a given power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$, there are only three possibilities:
(i) The series converges only for $x=a$

$$
R=0 ; \text { interval: }\{a\}
$$

(ii) The series converges for all $x \in \mathbb{R}$

$$
R=\infty ; \text { interval: }(-\infty, \infty)
$$

(iii) There is a number $R>0$ such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$
Note: Convergence at the endpoints of the interval is determined by testing them individually.

## Exercises:

Find the radius of convergence and interval of convergence of the series.
4-1b

- $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$
- $\sum_{n=1}^{\infty} n^{n} x^{n}$
- $\sum_{n=1}^{\infty} \frac{x^{2 n}}{n!}$

4-1c

- $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 5^{n}} x^{n}$
- $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1) 2^{n}}(x-1)^{n}$

4-1d
$\sum_{n=2}^{\infty} \frac{b^{n}}{\ln n}(x-a)^{n}, \quad b>0$
$4-1 e$

- $\sum_{n=1}^{\infty} \frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1)}$

